
SOLVING CONTINUOUS CONTROL VIA EPISODIC MEMORY
IGOR KUZNETSOV, ANDREY FILCHENKOV

ABSTRACT
We present EMAC, a model-free off-policy algo-
rithm that uses episodic memory to solve con-
tinuous control tasks. We use episodic memory
module to store representations of (s, a) pairs with
corresponding returns. Stored memories allow us
to reduce Q-value overestimation and introduce
episodic prioritisation. Based on DDPG, EMAC
exceeds DDPG, TD3 on all tested environments
and SAC on 3 out of 5 environments

Keywords: episodic memory, off-policy algo-
rithms, continuous control

Q-VALUE OVERESTIMATION
• Given the (s, a) pair, we can get MC returns

from the similar states and actions that were
seen in the past.

• We propose the new critic objective

JQ = (Q(st, at)−Q′)2 + α(Q(stat)−QM )2 (1)

• MC returns from the past suboptimal policy
are generally less than the true Q-estimate

• ThereforeQM can be seen as a penalty to the
Q-overestimation of a critic

RESULTS
We evaluate the algorithm on 5 OpenAI environments: Walker2d, Hopper, Swimmer, InvertedPendu-
lum, InvertedDoublePendulum on 100k environment steps. EMAC outperforms DDPG and TD3 on all
environments and SAC on 3 environments.

REFERENCES

[1] Alexander Pritzel, Benigno Uria, Sriram Srini-
vasan, Adrià Puigdomènech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blun-
dell. Neural episodic control. In ICML, 2017.

[2] Zichuan Lin, Tianqi Zhao, Guangwen Yang, and
Lintao Zhang. Episodic memory deep q-networks.
In IJCAI, 2018.

FUTURE RESEARCH

Current memory representation with random pro-
jections has its limits as it does not reflect topo-
logical structure of states and actions. Therefore,
we plan to use more complex differential mem-
ory representations in future. Another direction
of research is explicitly introducing short-term

working memory mechanisms alongside episodic
memory. The motivation is to mimic human
learning system with long-term and short-term
memory mechanisms, exploiting the benefits from
both.

CONTACT INFORMATION
Email igorkuznetsov14@gmail.com
Twitter @schatty_
Web https://schatty.github.io

DESIGN CHOICE

• During the lookup operation we search for
K = 1 or K = 2 nearest (s, a) pairs

• Memory module capacity is equal to the ca-
pacity of replay buffer, which is possible due
to the low-data regime

• The projected dimension size is set to the
minimal size 4 for speed-up lookup

• The search for the similar (s, a) pairs is
performed with L2 distance and vectorized
with CUDA

MODEL ARCHITECTURE
• We use table-based structure for storing

memories
• Random Projection operator is applied to

concatenation of (s, a)
• Add operation appends new (s, a) : R to the

end of module
• Lookup operation searches for the similar

(s, a) tuple in projected space and returns
corresponding MC returns

EPISODIC PRIORITIZATION
We exploit stored MC returns (pi) as a measure of
prioritization, which improves performance

P (i) =
pβi∑
k p

β
k

, (2)

igorkuznetsov14@gmail.com
@schatty_
https://schatty.github.io

